
Chapter 1

What Is Number Theory?

Number theory is the study of the set of positive whole numbers

1, 2, 3, 4, 5, 6, 7, . . . ,

which are often called the set of natural numbers. We will especially want to study
the relationships between different sorts of numbers. Since ancient times, people
have separated the natural numbers into a variety of different types. Here are some
familiar and not-so-familiar examples:

odd 1, 3, 5, 7, 9, 11, . . .
even 2, 4, 6, 8, 10, . . .
square 1, 4, 9, 16, 25, 36, . . .
cube 1, 8, 27, 64, 125, . . .
prime 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
composite 4, 6, 8, 9, 10, 12, 14, 15, 16, . . .
1 (modulo 4) 1, 5, 9, 13, 17, 21, 25, . . .
3 (modulo 4) 3, 7, 11, 15, 19, 23, 27, . . .
triangular 1, 3, 6, 10, 15, 21, . . .
perfect 6, 28, 496, . . .
Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, . . .

Many of these types of numbers are undoubtedly already known to you. Oth-
ers, such as the “modulo 4” numbers, may not be familiar. A number is said to be
congruent to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and sim-
ilarly for the 3 (modulo 4) numbers. A number is called triangular if that number
of pebbles can be arranged in a triangle, with one pebble at the top, two pebbles
in the next row, and so on. The Fibonacci numbers are created by starting with 1
and 1. Then, to get the next number in the list, just add the previous two. Finally, a
number is perfect if the sum of all its divisors, other than itself, adds back up to the
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original number. Thus, the numbers dividing 6 are 1, 2, and 3, and 1 + 2 + 3 = 6.
Similarly, the divisors of 28 are 1, 2, 4, 7, and 14, and

1 + 2 + 4 + 7 + 14 = 28.

We will encounter all these types of numbers, and many others, in our excursion
through the Theory of Numbers.

Some Typical Number Theoretic Questions

The main goal of number theory is to discover interesting and unexpected rela-
tionships between different sorts of numbers and to prove that these relationships
are true. In this section we will describe a few typical number theoretic problems,
some of which we will eventually solve, some of which have known solutions too
difficult for us to include, and some of which remain unsolved to this day.

Sums of Squares I. Can the sum of two squares be a square? The answer is
clearly “YES”; for example 32 + 42 = 52 and 52 + 122 = 132. These are
examples of Pythagorean triples. We will describe all Pythagorean triples in
Chapter 2.

Sums of Higher Powers. Can the sum of two cubes be a cube? Can the sum
of two fourth powers be a fourth power? In general, can the sum of two
nth powers be an nth power? The answer is “NO.” This famous problem,
called Fermat’s Last Theorem, was first posed by Pierre de Fermat in the
seventeenth century, but was not completely solved until 1994 by Andrew
Wiles. Wiles’s proof uses sophisticated mathematical techniques that we
will not be able to describe in detail, but in Chapter 30 we will prove that
no fourth power is a sum of two fourth powers, and in Chapter 46 we will
sketch some of the ideas that go into Wiles’s proof.

Infinitude of Primes. A prime number is a number p whose only factors are 1
and p.

• Are there infinitely many prime numbers?

• Are there infinitely many primes that are 1 modulo 4 numbers?

• Are there infinitely many primes that are 3 modulo 4 numbers?

The answer to all these questions is “YES.” We will prove these facts in
Chapters 12 and 21 and also discuss a much more general result proved by
Lejeune Dirichlet in 1837.
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Sums of Squares II. Which numbers are sums of two squares? It often turns out
that questions of this sort are easier to answer first for primes, so we ask
which (odd) prime numbers are a sum of two squares. For example,

3 = NO, 5 = 12 + 22, 7 = NO, 11 = NO,
13 = 22 + 32, 17 = 12 + 42, 19 = NO, 23 = NO,
29 = 22 + 52, 31 = NO, 37 = 12 + 62, . . .

Do you see a pattern? Possibly not, since this is only a short list, but a longer
list leads to the conjecture that p is a sum of two squares if it is congruent
to 1 (modulo 4). In other words, p is a sum of two squares if it leaves a
remainder of 1 when divided by 4, and it is not a sum of two squares if it
leaves a remainder of 3. We will prove that this is true in Chapter 24.

Number Shapes. The square numbers are the numbers 1, 4, 9, 16, . . . that can
be arranged in the shape of a square. The triangular numbers are the num-
bers 1, 3, 6, 10, . . . that can be arranged in the shape of a triangle. The first
few triangular and square numbers are illustrated in Figure 1.1.

• • •
• • • • • •

• • • • • •
• • • •

1 + 2 = 3 1 + 2 + 3 = 6 1 + 2 + 3 + 4 = 10
Triangular numbers

• • • • • • • • •
• • • • • • • • •

• • • • • • •
• • • •

22 = 4 32 = 9 42 = 16
Square numbers

Figure 1.1: Numbers That Form Interesting Shapes

A natural question to ask is whether there are any triangular numbers that
are also square numbers (other than 1). The answer is “YES,” the smallest
example being

36 = 62 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

So we might ask whether there are more examples and, if so, are there in-
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finitely many? To search for examples, the following formula is helpful:

1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
.

There is an amusing anecdote associated with this formula. One day
when the young Carl Friedrich Gauss (1777–1855) was in grade school,
his teacher became so incensed with the class that he set them the task
of adding up all the numbers from 1 to 100. As Gauss’s classmates
dutifully began to add, Gauss walked up to the teacher and presented the
answer, 5050. The story goes that the teacher was neither impressed nor
amused, but there’s no record of what the next make-work assignment
was!

There is an easy geometric way to verify Gauss’s formula, which may be the
way he discovered it himself. The idea is to take two triangles consisting of
1 + 2 + · · ·+ n pebbles and fit them together with one additional diagonal
of n+ 1 pebbles. Figure 1.2 illustrates this idea for n = 6.
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(1 + 2 + 3 + 4 + 5 + 6) + 7 + (6 + 5 + 4 + 3 + 2 + 1) = 72

Figure 1.2: The Sum of the First n Integers

In the figure, we have marked the extra n+ 1 = 7 pebbles on the diagonal
with black dots. The resulting square has sides consisting of n+ 1 pebbles,
so in mathematical terms we obtain the formula

2(1 + 2 + 3 + · · ·+ n) + (n+ 1) = (n+ 1)2,

two triangles + diagonal = square.
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Now we can subtract n + 1 from each side and divide by 2 to get Gauss’s
formula.

Twin Primes. In the list of primes it is sometimes true that consecutive odd num-
bers are both prime. We have boxed these twin primes in the following list
of primes less than 100:

3 , 5 , 7 , 11 , 13 , 17 , 19 , 23, 29 , 31 , 37

41 , 43 , 47, 53, 59 , 61 , 67, 71 , 73 , 79, 83, 89, 97.

Are there infinitely many twin primes? That is, are there infinitely many
prime numbers p such that p + 2 is also a prime? At present, no one knows
the answer to this question.

Primes of the Form N2 + 1. If we list the numbers of the form N2 + 1 taking
N = 1, 2, 3, . . ., we find that some of them are prime. Of course, if N is
odd, then N2 + 1 is even, so it won’t be prime unless N = 1. So it’s really
only interesting to take even values of N . We’ve highlighted the primes in
the following list:

22 + 1 = 5 42 + 1 = 17 62 + 1 = 37 82 + 1 = 65 = 5 · 13
102 + 1 = 101 122 + 1 = 145 = 5 · 29 142 + 1 = 197

162 + 1 = 257 182 + 1 = 325 = 52 · 13 202 + 1 = 401.

It looks like there are quite a few prime values, but if you take larger values
of N you will find that they become much rarer. So we ask whether there are
infinitely many primes of the form N2 + 1. Again, no one presently knows
the answer to this question.

We have now seen some of the types of questions that are studied in the Theory
of Numbers. How does one attempt to answer these questions? The answer is that
Number Theory is partly experimental and partly theoretical. The experimental
part normally comes first; it leads to questions and suggests ways to answer them.
The theoretical part follows; in this part one tries to devise an argument that gives
a conclusive answer to the questions. In summary, here are the steps to follow:

1. Accumulate data, usually numerical, but sometimes more abstract in nature.
2. Examine the data and try to find patterns and relationships.
3. Formulate conjectures (i.e., guesses) that explain the patterns and relation-

ships. These are frequently given by formulas.
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4. Test your conjectures by collecting additional data and checking whether the
new information fits your conjectures.

5. Devise an argument (i.e., a proof) that your conjectures are correct.

All five steps are important in number theory and in mathematics. More gener-
ally, the scientific method always involves at least the first four steps. Be wary of
any purported “scientist” who claims to have “proved” something using only the
first three. Given any collection of data, it’s generally not too difficult to devise
numerous explanations. The true test of a scientific theory is its ability to predict
the outcome of experiments that have not yet taken place. In other words, a scien-
tific theory only becomes plausible when it has been tested against new data. This
is true of all real science. In mathematics one requires the further step of a proof,
that is, a logical sequence of assertions, starting from known facts and ending at
the desired statement.

Exercises
1.1. The first two numbers that are both squares and triangles are 1 and 36. Find the
next one and, if possible, the one after that. Can you figure out an efficient way to find
triangular–square numbers? Do you think that there are infinitely many?

1.2. Try adding up the first few odd numbers and see if the numbers you get satisfy some
sort of pattern. Once you find the pattern, express it as a formula. Give a geometric
verification that your formula is correct.

1.3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many
such “prime triplets”? That is, are there infinitely many prime numbers p such that p+ 2
and p+ 4 are also primes?

1.4. It is generally believed that infinitely many primes have the form N2 + 1, although
no one knows for sure.
(a) Do you think that there are infinitely many primes of the form N2 − 1?
(b) Do you think that there are infinitely many primes of the form N2 − 2?
(c) How about of the form N2 − 3? How about N2 − 4?
(d) Which values of a do you think give infinitely many primes of the form N2 − a?

1.5. The following two lines indicate another way to derive the formula for the sum of the
first n integers by rearranging the terms in the sum. Fill in the details.

1 + 2 + 3 + · · ·+ n = (1 + n) + (2 + (n− 1)) + (3 + (n− 2)) + · · ·
= (1 + n) + (1 + n) + (1 + n) + · · · .

How many copies of n + 1 are in there in the second line? You may need to consider the
cases of odd n and even n separately. If that’s not clear, first try writing it out explicitly for
n = 6 and n = 7.
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1.6. For each of the following statements, fill in the blank with an easy-to-check crite-
rion:
(a) M is a triangular number if and only if is an odd square.
(b) N is an odd square if and only if is a triangular number.
(c) Prove that your criteria in (a) and (b) are correct.



Chapter 2

Pythagorean Triples

The Pythagorean Theorem, that “beloved” formula of all high school geometry
students, says that the sum of the squares of the sides of a right triangle equals the
square of the hypotenuse. In symbols,
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a2 + b2 = c2

Figure 2.1: A Pythagorean Triangle

Since we’re interested in number theory, that is, the theory of the natural num-
bers, we will ask whether there are any Pythagorean triangles all of whose sides are
natural numbers. There are many such triangles. The most famous has sides 3, 4,
and 5. Here are the first few examples:

32 + 42 = 52, 52 + 122 = 132, 82 + 152 = 172, 282 + 452 = 532.

The study of these Pythagorean triples began long before the time of Pythago-
ras. There are Babylonian tablets that contain lists of parts of such triples, including
quite large ones, indicating that the Babylonians probably had a systematic method
for producing them. Even more amazing is the fact that the Babylonians may have
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used their lists of Pythagorean triples as primitive trigonometric tables. Pythago-
rean triples were also used in ancient Egypt. For example, a rough-and-ready way
to produce a right angle is to take a piece of string, mark it into 12 equal segments,
tie it into a loop, and hold it taut in the form of a 3-4-5 triangle, as illustrated in Fig-
ure 2.2. This provides an inexpensive right angle tool for use on small construction
projects (such as marking property boundaries or building pyramids).

t t t t tt
tt

t t t t
�

�
�
�
�

�
�
�

String pulled taut

tt t t t t tttttt

String with 12 knots

Figure 2.2: Using a knotted string to create a right triangle

The Babylonians and Egyptians had practical reasons for studying Pythagor-
ean triples. Do such practical reasons still exist? For this particular problem, the
answer is “probably not.” However, there is at least one good reason to study
Pythagorean triples, and it’s the same reason why it is worthwhile studying the art
of Rembrandt and the music of Beethoven. There is a beauty to the ways in which
numbers interact with one another, just as there is a beauty in the composition of a
painting or a symphony. To appreciate this beauty, one has to be willing to expend
a certain amount of mental energy. But the end result is well worth the effort. Our
goal in this book is to understand and appreciate some truly beautiful mathematics,
to learn how this mathematics was discovered and proved, and maybe even to make
some original contributions of our own.

Enough blathering, you are undoubtedly thinking. Let’s get to the real stuff.
Our first naive question is whether there are infinitely many Pythagorean triples,
that is, triples of natural numbers (a, b, c) satisfying the equation a2 + b2 = c2. The
answer is “YES” for a very silly reason. If we take a Pythagorean triple (a, b, c)
and multiply it by some other number d, then we obtain a new Pythagorean triple
(da, db, dc). This is true because

(da)2 + (db)2 = d2(a2 + b2) = d2c2 = (dc)2.

Clearly these new Pythagorean triples are not very interesting. So we will concen-
trate our attention on triples with no common factors. We will even give them a
name:
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A primitive Pythagorean triple (or PPT for short) is a triple of num-
bers (a, b, c) such that a, b, and c have no common factors1 and
satisfy

a2 + b2 = c2.

Recall our checklist from Chapter 1. The first step is to accumulate some data.
I used a computer to substitute in values for a and b and checked if a2 + b2 is a
square. Here are some primitive Pythagorean triples that I found:

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25),
(20, 21, 29), (9, 40, 41), (12, 35, 37), (11, 60, 61),
(28, 45, 53), (33, 56, 65), (16, 63, 65).

A few conclusions can easily be drawn even from such a short list. For example, it
certainly looks like one of a and b is odd and the other even. It also seems that c is
always odd.

It’s not hard to prove that these conjectures are correct. First, if a and b are both
even, then c would also be even. This means that a, b, and c would have a common
factor of 2, so the triple would not be primitive. Next, suppose that a and b are
both odd, which means that c would have to be even. This means that there are
numbers x, y, and z such that

a = 2x+ 1, b = 2y + 1, and c = 2z.

We can substitute these into the equation a2 + b2 = c2 to get

(2x+ 1)2 + (2y + 1)2 = (2z)2,

4x2 + 4x+ 4y2 + 4y + 2 = 4z2.

Now divide by 2,

2x2 + 2x+ 2y2 + 2y + 1 = 2z2.

This last equation says that an odd number is equal to an even number, which is
impossible, so a and b cannot both be odd. Since we’ve just checked that they
cannot both be even and cannot both be odd, it must be true that one is even and

1A common factor of a, b, and c is a number d such that each of a, b, and c is a multiple of d . For
example, 3 is a common factor of 30, 42, and 105, since 30 = 3 · 10, 42 = 3 · 14, and 105 = 3 · 35,
and indeed it is their largest common factor. On the other hand, the numbers 10, 12, and 15 have
no common factor (other than 1). Since our goal in this chapter is to explore some interesting and
beautiful number theory without getting bogged down in formalities, we will use common factors
and divisibility informally and trust our intuition. In Chapter 5 we will return to these questions and
develop the theory of divisibility more carefully.
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the other is odd. It’s then obvious from the equation a2 + b2 = c2 that c is also
odd.

We can always switch a and b, so our problem now is to find all solutions in
natural numbers to the equation

a2 + b2 = c2 with


a odd,
b even,
a, b, c having no common factors.

The tools that we use are factorization and divisibility.
Our first observation is that if (a, b, c) is a primitive Pythagorean triple, then

we can factor
a2 = c2 − b2 = (c− b)(c+ b).

Here are a few examples from the list given earlier, where note that we always
take a to be odd and b to be even:

32 = 52 − 42 = (5− 4)(5 + 4) = 1 · 9,
152 = 172 − 82 = (17− 8)(17 + 8) = 9 · 25,
352 = 372 − 122 = (37− 12)(37 + 12) = 25 · 49,
332 = 652 − 562 = (65− 56)(65 + 56) = 9 · 121.

It looks like c − b and c + b are themselves always squares. We check this obser-
vation with a couple more examples:

212 = 292 − 202 = (29− 20)(29 + 20) = 9 · 49,
632 = 652 − 162 = (65− 16)(65 + 16) = 49 · 81.

How can we prove that c− b and c+ b are squares? Another observation ap-
parent from our list of examples is that c− b and c+ b seem to have no common
factors. We can prove this last assertion as follows. Suppose that d is a common
factor of c− b and c+ b; that is, d divides both c− b and c+ b. Then d also divides

(c+ b) + (c− b) = 2c and (c+ b)− (c− b) = 2b.

Thus, d divides 2b and 2c. But b and c have no common factor because we are
assuming that (a, b, c) is a primitive Pythagorean triple. So d must equal 1 or 2.
But d also divides (c− b)(c+ b) = a2, and a is odd, so d must be 1. In other
words, the only number dividing both c− b and c+ b is 1, so c− b and c+ b have
no common factor.
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We now know that c− b and c+ b are positive integers having no common
factor, that their product is a square since (c− b)(c+ b) = a2. The only way that
this can happen is if c− b and c+ b are themselves squares.2 So we can write

c+ b = s2 and c− b = t2,

where s > t ≥ 1 are odd integers with no common factors. Solving these two
equations for b and c yields

c =
s2 + t2

2
and b =

s2 − t2

2
,

and then
a =

√
(c− b)(c+ b) = st.

We have (almost) finished our first proof! The following theorem records our
accomplishment.

Theorem 2.1 (Pythagorean Triples Theorem). We will get every primitive Pytha-
gorean triple (a, b, c) with a odd and b even by using the formulas

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ≥ 1 are chosen to be any odd integers with no common factors.

Why did we say that we have “almost” finished the proof? We have shown
that if (a, b, c) is a PPT with a odd, then there are odd integers s > t ≥ 1 with
no common factors so that a, b, and c are given by the stated formulas. But we
still need to check that these formulas always give a PPT. We first use a little bit of
algebra to show that the formulas give a Pythagorean triple. Thus

(st)2+

(
s2 − t2

2

)2

= s2t2+
s4 − 2s2t2 + t4

4
=

s4 + 2s2t2 + t4

4
=

(
s2 + t2

2

)2

.

We also need to check that st, s2−t2

2 , and s2+t2

2 have no common factors. This
is most easily accomplished using an important property of prime numbers, so
we postpone the proof until Chapter 7, where you will finish the argument (Exer-
cise 7.3).

2This is intuitively clear if you consider the factorization of c− b and c+ b into primes, since
the primes in the factorization of c− b will be distinct from the primes in the factorization of c+ b.
However, the existence and uniqueness of the factorization into primes is by no means as obvious as
it appears. We will discuss this further in Chapter 7.
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For example, taking t = 1 in Theorem 2.1 gives a triple
(
s, s

2−1
2 , s

2+1
2

)
whose b and c entries differ by 1. This explains many of the examples that we
listed. The following table gives all possible triples with s ≤ 9.

s t a = st b =
s2 − t2

2
c =

s2 + t2

2

3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41
5 3 15 8 17
7 3 21 20 29
7 5 35 12 37
9 5 45 28 53
9 7 63 16 65

A Notational Interlude

Mathematicians have created certain standard notations as a shorthand for various
quantities. We will keep our use of such notation to a minimum, but there are a
few symbols that are so commonly used and are so useful that it is worthwhile to
introduce them here. They are

N = the set of natural numbers = 1, 2, 3, 4, . . . ,

Z = the set of integers = . . .− 3,−2,−1, 0, 1, 2, 3, . . . ,
Q = the set of rational numbers (i.e., fractions).

In addition, mathematicians often use R to denote the real numbers and C for the
complex numbers, but we will not need these. Why were these letters chosen?
The choice of N, R, and C needs no explanation. The letter Z for the set of inte-
gers comes from the German word “Zahlen,” which means numbers. Similarly, Q
comes from the German “Quotient” (which is the same as the English word). We
will also use the standard mathematical symbol ∈ to mean “is an element of the
set.” So, for example, a ∈ N means that a is a natural number, and x ∈ Q means
that x is a rational number.

Exercises
2.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even.

Use the same sort of argument to show that either a or b must be a multiple of 3.
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(b) By examining the above list of primitive Pythagorean triples, make a guess about
when a, b, or c is a multiple of 5. Try to show that your guess is correct.

2.2. A nonzero integer d is said to divide an integer m if m = dk for some number k.
Show that if d divides both m and n, then d also divides m− n and m+ n.

2.3. For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But
don’t worry if you can’t solve every part of this problem; some parts are quite difficult.)
(a) Which odd numbers a can appear in a primitive Pythagorean triple (a, b, c)?
(b) Which even numbers b can appear in a primitive Pythagorean triple (a, b, c)?
(c) Which numbers c can appear in a primitive Pythagorean triple (a, b, c)?

2.4. In our list of examples are the two primitive Pythagorean triples

332 + 562 = 652 and 162 + 632 = 652.

Find at least one more example of two primitive Pythagorean triples with the same value
of c. Can you find three primitive Pythagorean triples with the same c? Can you find more
than three?

2.5. In Chapter 1 we saw that the nth triangular number Tn is given by the formula

Tn = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean
triples (a, b, c), we find (3, 4, 5), (5, 12, 13), (7, 24, 25), and (9, 40, 41). Notice that in each
case, the value of b is four times a triangular number.
(a) Find a primitive Pythagorean triple (a, b, c) with b = 4T5. Do the same for b = 4T6

and for b = 4T7.
(b) Do you think that for every triangular number Tn, there is a primitive Pythagorean

triple (a, b, c) with b = 4Tn? If you believe that this is true, then prove it. Otherwise,
find some triangular number for which it is not true.

2.6. If you look at the table of primitive Pythagorean triples in this chapter, you will see
many triples in which c is 2 greater than a. For example, the triples (3, 4, 5), (15, 8, 17),
(35, 12, 37), and (63, 16, 65) all have this property.
(a) Find two more primitive Pythagorean triples (a, b, c) having c = a+ 2.
(b) Find a primitive Pythagorean triple (a, b, c) having c = a+ 2 and c > 1000.
(c) Try to find a formula that describes all primitive Pythagorean triples (a, b, c) having

c = a+ 2.

2.7. For each primitive Pythagorean triple (a, b, c) in the table in this chapter, compute the
quantity 2c− 2a. Do these values seem to have some special form? Try to prove that your
observation is true for all primitive Pythagorean triples.

2.8. Let m and n be numbers that differ by 2, and write the sum 1
m + 1

n as a fraction in
lowest terms. For example, 1

2 + 1
4 = 3

4 and 1
3 + 1

5 = 8
15 .
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(a) Compute the next three examples.
(b) Examine the numerators and denominators of the fractions in (a) and compare them

with the table of Pythagorean triples on page 18. Formulate a conjecture about such
fractions.

(c) Prove that your conjecture is correct.

2.9. (a) Read about the Babylonian number system and write a short description, includ-
ing the symbols for the numbers 1 to 10 and the multiples of 10 from 20 to 50.

(b) Read about the Babylonian tablet called Plimpton 322 and write a brief report, in-
cluding its approximate date of origin.

(c) The second and third columns of Plimpton 322 give pairs of integers (a, c) having
the property that c2 − a2 is a perfect square. Convert some of these pairs from Baby-
lonian numbers to decimal numbers and compute the value of b so that (a, b, c) is a
Pythagorean triple.



Chapter 3

Pythagorean Triples
and the Unit Circle

In the previous chapter we described all solutions to

a2 + b2 = c2

in whole numbers a, b, c. If we divide this equation by c2, we obtain(a
c

)2
+

(
b

c

)2

= 1.

So the pair of rational numbers (a/c, b/c) is a solution to the equation

x2 + y2 = 1.

Everyone knows what the equation x2 + y2 = 1 looks like: It is a circle C of
radius 1 with center at (0, 0). We are going to use the geometry of the circle C to
find all the points on C whose xy-coordinates are rational numbers. Notice that
the circle has four obvious points with rational coordinates, (±1, 0) and (0,±1).
Suppose that we take any (rational) number m and look at the line L going through
the point (−1, 0) and having slope m. (See Figure 3.1.) The line L is given by the
equation

L : y = m(x+ 1) (point–slope formula).

It is clear from the picture that the intersection C∩L consists of exactly two points,
and one of those points is (−1, 0). We want to find the other one.

To find the intersection of C and L, we need to solve the equations

x2 + y2 = 1 and y = m(x+ 1)
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C

L = line with
slope m

(–1,0 )

Figure 3.1: The Intersection of a Circle and a Line

for x and y. Substituting the second equation into the first and simplifying, we
need to solve

x2 +
(
m(x+ 1)

)2
= 1

x2 +m2(x2 + 2x+ 1) = 1

(m2 + 1)x2 + 2m2x+ (m2 − 1) = 0.

This is just a quadratic equation, so we could use the quadratic formula to solve
for x. But there is a much easier way to find the solution. We know that x = −1
must be a solution, since the point (−1, 0) is on both C and L. This means that we
can divide the quadratic polynomial by x+ 1 to find the other root:

(m2 + 1)x+ (m2 − 1)

x+ 1
)
(m2 + 1)x2 + 2m2x+ (m2 − 1) .

So the other root is the solution of (m2 + 1)x + (m2 − 1) = 0, which means
that

x =
1−m2

1 +m2
.

Then we substitute this value of x into the equation y = m(x+ 1) of the line L to
find the y-coordinate,

y = m(x+ 1) = m

(
1−m2

1 +m2
+ 1

)
=

2m

1 +m2
.

Thus, for every rational number m we get a solution in rational numbers(
1−m2

1 +m2
,

2m

1 +m2

)
to the equation x2 + y2 = 1.
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On the other hand, if we have a solution (x1, y1) in rational numbers, then the
slope of the line through (x1, y1) and (−1, 0) will be a rational number. So by
taking all possible values for m, the process we have described will yield every so-
lution to x2 + y2 = 1 in rational numbers [except for (−1, 0), which corresponds
to a vertical line having slope “m =∞”]. We summarize our results in the follow-
ing theorem.

Theorem 3.1. Every point on the circle

x2 + y2 = 1

whose coordinates are rational numbers can be obtained from the formula

(x, y) =

(
1−m2

1 +m2
,

2m

1 +m2

)
by substituting in rational numbers for m [except for the point (−1, 0)which is the
limiting value as m→∞].

How is this formula for rational points on a circle related to our formula for
Pythagorean triples? If we write the rational number m as a fraction v/u, then our
formula becomes

(x, y) =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
,

and clearing denominators gives the Pythagorean triple

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

This is another way of describing Pythagorean triples, although to describe only
the primitive ones would require some restrictions on u and v. You can relate this
description to the formula in Chapter 2 by setting

u =
s+ t

2
and v =

s− t

2
.

Exercises
3.1. As we have just seen, we get every Pythagorean triple (a, b, c) with b even from the
formula

(a, b, c) = (u2 − v2, 2uv, u2 + v2)

by substituting in different integers for u and v. For example, (u, v) = (2, 1) gives the
smallest triple (3, 4, 5).
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(a) If u and v have a common factor, explain why (a, b, c) will not be a primitive Pytha-
gorean triple.

(b) Find an example of integers u > v > 0 that do not have a common factor, yet the
Pythagorean triple (u2 − v2, 2uv, u2 + v2) is not primitive.

(c) Make a table of the Pythagorean triples that arise when you substitute in all values
of u and v with 1 ≤ v < u ≤ 10.

(d) Using your table from (c), find some simple conditions on u and v that ensure that
the Pythagorean triple (u2 − v2, 2uv, u2 + v2) is primitive.

(e) Prove that your conditions in (d) really work.

3.2. (a) Use the lines through the point (1, 1) to describe all the points on the circle

x2 + y2 = 2

whose coordinates are rational numbers.
(b) What goes wrong if you try to apply the same procedure to find all the points on the

circle x2 + y2 = 3 with rational coordinates?

3.3. Find a formula for all the points on the hyperbola

x2 − y2 = 1

whose coordinates are rational numbers. [Hint. Take the line through the point (−1, 0)
having rational slope m and find a formula in terms of m for the second point where the
line intersects the hyperbola.]

3.4. The curve
y2 = x3 + 8

contains the points (1,−3) and (−7/4, 13/8). The line through these two points intersects
the curve in exactly one other point. Find this third point. Can you explain why the
coordinates of this third point are rational numbers?

3.5. Numbers that are both square and triangular numbers were introduced in Chapter 1,
and you studied them in Exercise 1.1.
(a) Show that every square–triangular number can be described using the solutions in

positive integers to the equation x2 − 2y2 = 1. [Hint. Rearrange the equation m2 =
1
2 (n

2 + n).]
(b) The curve x2 − 2y2 = 1 includes the point (1, 0). Let L be the line through (1, 0)

having slope m. Find the other point where L intersects the curve.
(c) Suppose that you take m to equal m = v/u, where (u, v) is a solution to u2− 2v2 =

1. Show that the other point that you found in (b) has integer coordinates. Further,
changing the signs of the coordinates if necessary, show that you get a solution to
x2 − 2y2 = 1 in positive integers.

(d) Starting with the solution (3, 2) to x2 − 2y2 = 1, apply (b) and (c) repeatedly to find
several more solutions to x2 − 2y2 = 1. Then use those solutions to find additional
examples of square–triangular numbers.
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(e) Prove that this procedure leads to infinitely many different square-triangular numbers.
(f) Prove that every square–triangular number can be constructed in this way. (This part

is very difficult. Don’t worry if you can’t solve it.)



Chapter 4

Sums of Higher Powers
and Fermat’s Last Theorem

In the previous two chapters we discovered that the equation

a2 + b2 = c2

has lots of solutions in whole numbers a, b, c. It is natural to ask whether there are
solutions when the exponent 2 is replaced by a higher power. For example, do the
equations

a3 + b3 = c3 and a4 + b4 = c4 and a5 + b5 = c5

have solutions in nonzero integers a, b, c? The answer is “NO.” Sometime around
1637, Pierre de Fermat showed that there is no solution for exponent 4. During
the eighteenth and nineteenth centuries, Carl Friedrich Gauss and Leonhard Euler
showed that there is no solution for exponent 3 and Lejeune Dirichlet and Adrien
Legendre dealt with the exponent 5. The general problem of showing that the
equation

an + bn = cn

has no solutions in positive integers if n ≥ 3 is known as “Fermat’s Last Theo-
rem.” It has attained almost cult status in the 350 years since Fermat scribbled the
following assertion in the margin of one of his books:

It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general any power higher than the second into powers of
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like degree. I have discovered a truly remarkable proof which this margin is
too small to contain.1

Few mathematicians today believe that Fermat had a valid proof of his “The-
orem,” which is called his Last Theorem because it was the last of his assertions
that remained unproved. The history of Fermat’s Last Theorem is fascinating, with
literally hundreds of mathematicians making important contributions. Even a brief
summary could easily fill a book. This is not our intent in this volume, so we will
be content with a few brief remarks.

One of the first general results on Fermat’s Last Theorem, as opposed to verifi-
cation for specific exponents n, was given by Sophie Germain in 1823. She proved
that if both p and 2p+ 1 are primes then the equation ap + bp = cp has no so-
lutions in integers a, b, c with p not dividing the product abc. A later result of a
similar nature, due to A. Wieferich in 1909, is that the same conclusion is true if
the quantity 2p − 2 is not divisible by p2. Meanwhile, during the latter part of
the nineteenth century a number of mathematicians, including Richard Dedekind,
Leopold Kronecker, and especially Ernst Kummer, developed a new field of math-
ematics called algebraic number theory and used their theory to prove Fermat’s
Last Theorem for many exponents, although still only a finite list. Then, in 1985,
L.M. Adleman, D.R. Heath-Brown, and E. Fouvry used a refinement of Germain’s
criterion together with difficult analytic estimates to prove that there are infinitely
many primes p such that ap + bp = cp has no solutions with p not dividing abc.

Sophie Germain (1776–1831) Sophie Germain was a French mathemati-
cian who did important work in number theory and differential equations.
She is best known for her work on Fermat’s Last Theorem, where she gave
a simple criterion that suffices to show that the equation ap + bp = cp has
no solutions with abc not divisible by p. She also did work on acoustics and
elasticity, especially the theory of vibrating plates. As a mathematics student,
she was forced to take correspondence courses from the École Polytechnique
in Paris, since they did not accept women as students. For a similar reason,
she began her extensive correspondence with Gauss using the pseudonym
Monsieur Le Blanc; but when she eventually revealed her identity, Gauss
was delighted and sufficiently impressed with her work to recommend her
for an honorary degree at the University of Göttingen.

In 1986 Gerhard Frey suggested a new line of attack on Fermat’s problem using
a notion called modularity. Frey’s idea was refined by Jean-Pierre Serre, and Ken

1Translated from the Latin: “Cubum autem in duos cubos, aut quadrato quadratum in duos
quadrato quadratos, & generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem
nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
non caperet.”
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Ribet subsequently proved that if the Modularity Conjecture is true, then Fermat’s
Last Theorem is true. Precisely, Ribet proved that if every semistable elliptic curve2

is modular3 then Fermat’s Last Theorem is true. The Modularity Conjecture, which
asserts that every rational elliptic curve is modular, was at that time a conjecture
originally formulated by Goro Shimura and Yutaka Taniyama. Finally, in 1994,
Andrew Wiles announced a proof that every semistable rational elliptic curve is
modular, thereby completing the proof of Fermat’s 350-year-old claim. Wiles’s
proof, which is a tour de force using the vast machinery of modern number theory
and algebraic geometry, is far too complicated for us to describe in detail, but we
will try to convey the flavor of his proof in Chapter 46.

Few mathematical or scientific discoveries arise in a vacuum. Even Sir Isaac
Newton, the transcendent genius not noted for his modesty, wrote that “If I have
seen further, it is by standing on the shoulders of giants.” Here is a list of some
of the giants, all contemporary mathematicians, whose work either directly or in-
directly contributed to Wiles’s brilliant proof. The diversified nationalities high-
light the international character of modern mathematics. In alphabetical order:
Spencer Bloch (USA), Henri Carayol (France), John Coates (Australia), Pierre
Deligne (Belgium), Ehud de Shalit (Israel), Fred Diamond (USA), Gerd Falt-
ings (Germany), Matthias Flach (Germany), Gerhard Frey (Germany), Alexander
Grothendieck (France), Yves Hellegouarch (France), Haruzo Hida (Japan), Ken-
kichi Iwasawa (Japan), Kazuya Kato (Japan), Nick Katz (USA), V.A. Kolyvagin
(Russia), Ernst Kunz (Germany), Robert Langlands (Canada), Hendrik Lenstra
(The Netherlands), Wen-Ch’ing Winnie Li (USA), Barry Mazur (USA), André
Néron (France), Ravi Ramakrishna (USA), Michel Raynaud (France), Ken Ri-
bet (USA), Karl Rubin (USA), Jean-Pierre Serre (France), Goro Shimura (Japan),
Yutaka Taniyama (Japan), John Tate (USA), Richard Taylor (England), Jacques
Tilouine (France), Jerry Tunnell (USA), André Weil (France), Andrew Wiles (Eng-
land).

Exercises
4.1. Write a one- to two-page biography on one (or more) of the following mathematicians.
Be sure to describe their mathematical achievements, especially in number theory, and
some details of their lives. Also include a paragraph putting them into an historical context

2An elliptic curve is a certain sort of curve, not an ellipse, given by an equation of the form
y2 = x3 + ax2 + bx+ c, where a, b, c are integers. The elliptic curve is semistable if the quantities
3b− a2 and 27c− 9ab+2a3 have no common factors other than 2 and satisfy a few other technical
conditions. We study elliptic curves in Chapters 41–46.

3An elliptic curve is called modular if there is a map to it from another special sort of curve called
a modular curve.
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by describing the times (scientifically, politically, socially, etc.) during which they lived
and worked: (a) Niels Abel, (b) Claude Gaspar Bachet de Meziriac, (c) Richard Dedekind,
(d) Diophantus of Alexandria, (e) Lejeune Dirichlet, (f) Eratosthenes, (g) Euclid of Alexan-
dria, (h) Leonhard Euler, (i) Pierre de Fermat, (j) Leonardo Fibonacci, (k) Carl Friedrich
Gauss, (l) Sophie Germain, (m) David Hilbert, (n) Carl Jacobi, (o) Leopold Kronecker,
(p) Ernst Kummer, (q) Joseph-Louis Lagrange, (r) Adrien-Marie Legendre, (s) Joseph Li-
ouville, (t) Marin Mersenne, (u) Hermann Minkowski, (v) Sir Isaac Newton, (w) Pythago-
ras, (x) Srinivasa Ramanujan, (y) Bernhard Riemann, (z) P.L. Tchebychef (also spelled
Chebychev).

4.2. The equation a2+b2 = c2 has lots of solutions in positive integers, while the equation
a3 + b3 = c3 has no solutions in positive integers. This exercise asks you to look for
solutions to the equation

a3 + b3 = c2 (∗)

in integers c ≥ b ≥ a ≥ 1.
(a) The equation (∗) has the solution (a, b, c) = (2, 2, 4). Find three more solutions in

positive integers. [Hint. Look for solutions of the form (a, b, c) = (xz, yz, z2). Not
every choice of x, y, z will work, of course, so you’ll need to figure out which ones
do work.]

(b) If (A,B,C) is a solution to (∗) and n is any integer, show that (n2A,n2B,n3C) is
also a solution to (∗). We will say that a solution (a, b, c) to (∗) is primitive if it does
not look like (n2A,n2B,n3C) for any n ≥ 2.

(c) Write down four different primitive solutions to (∗). [That is, redo (a) using only
primitive solutions.]

(d) The solution (2, 2, 4) has a = b. Find all primitive solutions that have a = b.
(e) Find a primitive solution to (∗) that has a > 10000.



Chapter 5

Divisibility and the Greatest
Common Divisor

As we have already seen in our study of Pythagorean triples, the notions of divis-
ibility and factorizations are important tools in number theory. In this chapter we
will look at these ideas more closely.

Suppose that m and n are integers with m ̸= 0. We say that m divides n if n is
a multiple of m, that is, if there is an integer k such that n = mk. If m divides n,
we write m|n. Similarly, if m does not divide n, then we write m - n. For example,

3|6 and 12|132, since 6 = 3 · 2 and 132 = 12 · 11.

The divisors of 6 are 1, 2, 3, and 6. On the other hand, 5 - 7, since no integer
multiple of 5 is equal to 7. A number that divides n is called a divisor of n.

If we are given two numbers, we can look for common divisors, that is, num-
bers that divide both of them. For example, 4 is a common divisor of 12 and 20,
since 4|12 and 4|20. Notice that 4 is the largest common divisor of 12 and 20.
Similarly, 3 is a common divisor of 18 and 30, but it is not the largest, since 6
is also a common divisor. The largest common divisor of two numbers is an ex-
tremely important quantity that will frequently appear during our number theoretic
excursions.

The greatest common divisor of two numbers a and b (not both zero)
is the largest number that divides both of them. It is denoted by
gcd(a, b). If gcd(a, b) = 1, we say that a and b are relatively prime.

Two examples that we mentioned above are

gcd(12, 20) = 4 and gcd(18, 30) = 6.
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Another example is
gcd(225, 120) = 15.

We can check that this answer is correct by factoring 225 = 32 · 52 and 120 =
23 · 3 · 5, but, in general, factoring a and b is not an efficient way to compute their
greatest common divisor.1

The most efficient method known for finding the greatest common divisors of
two numbers is called the Euclidean algorithm. It consists of doing a sequence of
divisions with remainder until the remainder is zero. We will illustrate with two
examples before describing the general method.

As our first example, we will compute gcd(36, 132). The first step is to di-
vide 132 by 36, which gives a quotient of 3 and a remainder of 24. We write this
as

132 = 3× 36 + 24.

The next step is to take 36 and divide it by the remainder 24 from the previous step.
This gives

36 = 1× 24 + 12.

Next we divide 24 by 12, and we find a remainder of 0,

24 = 2× 12 + 0.

The Euclidean algorithm says that as soon as you get a remainder of 0, the re-
mainder from the previous step is the greatest common divisor of the original two
numbers. So in this case we find that gcd(132, 36) = 12.

Let’s do a larger example. We will compute

gcd(1160718174, 316258250).

Our reason for doing a large example like this is to help convince you that the
Euclidean algorithm gives a far more efficient way to compute gcd’s than factor-
ization. We begin by dividing 1160718174 by 316258250, which gives 3 with a
remainder of 211943424. Next we take 316258250 and divide it by 211943424.
This process continues until we get a remainder of 0. The calculations are given in

1An even less efficient way to compute the greatest common divisor of a and b is the method
taught to my daughter by her fourth grade teacher, who recommended that the students make com-
plete lists of all the divisors of a and b and then pick out the largest number that appears on both
lists!
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the following table:

1160718174 = 3× 316258250 + 211943424
316258250 = 1× 211943424 + 104314826
211943424 = 2× 104314826 + 3313772
104314826 = 31× 3313772 + 1587894

3313772 = 2× 1587894 + 137984
1587894 = 11× 137984 + 70070
137984 = 1× 70070 + 67914
70070 = 1× 67914 + 2156
67914 = 31× 2156 + 1078 ← gcd
2156 = 2× 1078 + 0

Notice how at each step we divide a number A by a number B to get a quotient Q
and a remainder R. In other words,

A = Q×B +R.

Then at the next step we replace our old A and B with the numbers B and R and
continue the process until we get a remainder of 0. At that point, the remainder R
from the previous step is the greatest common divisor of our original two numbers.
So the above calculation shows that

gcd(1160718174, 316258250) = 1078.

We can partly check our calculation (always a good idea) by verifying that 1078 is
indeed a common divisor. Thus

1160718174 = 1078× 1076733 and 316258250 = 1078× 293375.

There is one more practical matter to be mentioned before we undertake a
theoretical analysis of the Euclidean algorithm. If we are given A and B, how can
we find the quotient Q and the remainder R? Of course, you can always use long
division, but that can be time consuming and subject to arithmetic errors if A and B
are large. A pleasant alternative is to find a calculator or computer program that will
automatically compute Q and R for you. However, even if you are only equipped
with an inexpensive calculator, there is an easy three-step method to find Q and R.

Method to Compute Q and R on a Calculator So That A = B×Q+R

1. Use the calculator to divide A by B. You get a number with decimals.
2. Discard all the digits to the right of the decimal point. This gives Q.
3. To find R, use the formula R = A−B ×Q.
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For example, suppose that A = 12345 and B = 417. Then A/B = 29.6043 . . . ,
so Q = 29 and R = 12345− 417 · 29 = 252.

We’re now ready to analyze the Euclidean algorithm. The general method
looks like

a = q1 × b + r1
b = q2 × r1 + r2
r1 = q3 × r2 + r3
r2 = q4 × r3 + r4

...
rn−3 = qn−1 × rn−2 + rn−1

rn−2 = qn × rn−1 + rn ← gcd

rn−1 = qn+1rn + 0

If we let r0 = b and r−1 = a, then every line looks like

ri−1 = qi+1 × ri + ri+1.

Why is the last nonzero remainder rn a common divisor of a and b? We start
from the bottom and work our way up. The last line rn−1 = qn+1rn shows that rn
divides rn−1. Then the previous line

rn−2 = qn × rn−1 + rn

shows that rn divides rn−2, since it divides both rn−1 and rn. Now looking at the
line above that, we already know that rn divides both rn−1 and rn−2, so we find
that rn also divides rn−3. Moving up line by line, when we reach the second line we
will already know that rn divides r2 and r1. Then the second line b = q2 × r1 + r2
tells us that rn divides b. Finally, we move up to the top line and use the fact
that rn divides both r1 and b to conclude that rn also divides a. This completes our
verification that the last nonzero remainder rn is a common divisor of a and b.

But why is rn the greatest common divisor of a and b? Suppose that d is any
common divisor of a and b. We will work our way back down the list of equations.
So from the first equation a = q1 × b+ r1 and the fact that d divides both a and b,
we see that d also divides r1. Then the second equation b = q2r1 + r2 shows us
that d must divide r2. Continuing down line by line, at each stage we will know
that d divides the previous two remainders ri−1 and ri, and then the current line
ri−1 = qi+1 × ri + ri+1 will tell us that d also divides the next remainder ri+1.
Eventually, we reach the penultimate line rn−2 = qn × rn−1 + rn, at which point
we conclude that d divides rn. So we have shown that if d is any common divisor
of a and b then d will divide rn. Therefore, rn must be the greatest common divisor
of a and b.
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This completes our verification that the Euclidean algorithm actually com-
putes the greatest common divisor, a fact of sufficient importance to be officially
recorded.

Theorem 5.1 (Euclidean Algorithm). To compute the greatest common divisor of
two numbers a and b, let r−1 = a, let r0 = b, and compute successive quotients
and remainders

ri−1 = qi+1 × ri + ri+1

for i = 0, 1, 2, . . . until some remainder rn+1 is 0. The last nonzero remainder rn
is then the greatest common divisor of a and b.

There remains the question of why the Euclidean algorithm always finishes. In
other words, we know that the last nonzero remainder will be the desired gcd, but
how do we know that we ever get a remainder that does equal 0? This is not a
silly question, since it is easy to give algorithms that do not terminate; and there
are even very simple algorithms for which it is not known whether or not they
always terminate. Fortunately, it is easy to see that the Euclidean algorithm always
terminates. The reason is simple. Each time we compute a quotient with remainder,

A = Q×B +R,

the remainder will be between 0 and B − 1. This is clear, since if R ≥ B, then we
can add one more onto the quotient Q and subtract B from R. So the successive
remainders in the Euclidean algorithm continually decrease:

b = r0 > r1 > r2 > r3 > · · · .

But all the remainders are greater than or equal to 0, so we have a strictly decreasing
sequence of nonnegative integers. Eventually, we must reach a remainder that
equals 0; in fact, it is clear that we will reach a remainder of 0 in at most b steps.
Fortunately, the Euclidean algorithm is far more efficient than this. You will show
in the exercises that the number of steps in the Euclidean algorithm is at most seven
times the number of digits in b. So, on a computer, it is quite feasible to compute
gcd(a, b) when a and b have hundreds or even thousands of digits!

Exercises
5.1. Use the Euclidean algorithm to compute each of the following gcd’s.
(a) gcd(12345, 67890) (b) gcd(54321, 9876)

5.2. Write a program to compute the greatest common divisor gcd(a, b) of two inte-
gers a and b. Your program should work even if one of a or b is zero. Make sure that you
don’t go into an infinite loop if a and b are both zero!
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5.3. Let b = r0, r1, r2, . . . be the successive remainders in the Euclidean algorithm applied
to a and b. Show that after every two steps, the remainder is reduced by at least one half.
In other words, verify that

ri+2 <
1

2
ri for every i = 0, 1, 2, . . . .

Conclude that the Euclidean algorithm terminates in at most 2 log2(b) steps, where log2 is
the logarithm to the base 2. In particular, show that the number of steps is at most seven
times the number of digits in b. [Hint. What is the value of log2(10)?]

5.4. A number L is called a common multiple of m and n if both m and n divide L.
The smallest such L is called the least common multiple of m and n and is denoted by
LCM(m,n). For example, LCM(3, 7) = 21 and LCM(12, 66) = 132.
(a) Find the following least common multiples.

(i) LCM(8, 12) (ii) LCM(20, 30) (iii) LCM(51, 68) (iv) LCM(23, 18).
(b) For each of the LCMs that you computed in (a), compare the value of LCM(m,n)

to the values of m, n, and gcd(m,n). Try to find a relationship.
(c) Give an argument proving that the relationship you found is correct for all m and n.
(d) Use your result in (b) to compute LCM(301337, 307829).
(e) Suppose that gcd(m,n) = 18 and LCM(m,n) = 720. Find m and n. Is there more

than one possibility? If so, find all of them.

5.5. The “3n + 1 algorithm” works as follows. Start with any number n. If n is even,
divide it by 2. If n is odd, replace it with 3n+ 1. Repeat. So, for example, if we start
with 5, we get the list of numbers

5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . ,

and if we start with 7, we get

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . .

Notice that if we ever get to 1 the list just continues to repeat with 4, 2, 1’s. In general, one
of the following two possibilities will occur:2

(i) We may end up repeating some number a that appeared earlier in our list, in which
case the block of numbers between the two a’s will repeat indefinitely. In this case
we say that the algorithm terminates at the last nonrepeated value, and the number
of distinct entries in the list is called the length of the algorithm. For example, the
algorithm terminates at 1 for both 5 and 7. The length of the algorithm for 5 is 6,
and the length of the algorithm for 7 is 17.

(ii) We may never repeat the same number, in which case we say that the algorithm does
not terminate.

2There is, of course, a third possibility. We may get tired of computing and just stop working, in
which case one might say that the algorithm terminates due to exhaustion of the computer!
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(a) Find the length and terminating value of the 3n+1 algorithm for each of the following
starting values of n:

(i) n = 21 (ii) n = 13 (iii) n = 31

(b) Do some further experimentation and try to decide whether the 3n + 1 algorithm
always terminates and, if so, at what value(s) it terminates.

(c) Assuming that the algorithm terminates at 1, let L(n) be the length of the algorithm
for starting value n. For example, L(5) = 6 and L(7) = 17. Show that if n = 8k+4
with k ≥ 1, then L(n) = L(n+1). [Hint. What does the algorithm do to the starting
values 8k + 4 and 8k + 5?]

(d) Show that if n = 128k + 28 then L(n) = L(n+ 1) = L(n+ 2).
(e) Find some other conditions, similar to those in (c) and (d), for which consecutive

values of n have the same length. (It might be helpful to begin by using the next
exercise to accumulate some data.)

5.6. Write a program to implement the 3n + 1 algorithm described in the previous
exercise. The user will input n and your program should return the length L(n) and the
terminating value T (n) of the 3n+ 1 algorithm. Use your program to create a table giving
the length and terminating value for all starting values 1 ≤ n ≤ 100.



Chapter 6

Linear Equations and the
Greatest Common Divisor

Given two whole numbers a and b, we are going to look at all the possible numbers
we can get by adding a multiple of a to a multiple of b. In other words, we will
consider all numbers obtained from the formula

ax+ by

when we substitute all possible integers for x and y. Note that we are going to
allow both positive and negative values for x and y. For example, we could take
a = 42 and b = 30. Some of the values of ax+ by for this a and b are given in the
following table:

x = −3 x = −2 x = −1 x = 0 x = 1 x = 2 x = 3

y = −3 −216 −174 −132 −90 −48 −6 36

y = −2 −186 −144 −102 −60 −18 24 66

y = −1 −156 −114 −72 −30 12 54 96

y = 0 −126 −84 −42 0 42 84 126

y = 1 −96 −54 −12 30 72 114 156

y = 2 −66 −24 18 60 102 144 186

y = 3 −36 6 48 90 132 174 216

Table of Values of 42x+ 30y

Our first observation is that every entry in the table is divisible by 6. This is not
surprising, since both 42 and 30 are divisible by 6, so every number of the form
42x+ 30y = 6(7x+ 5y) is a multiple of 6. More generally, it is clear that ev-
ery number of the form ax+ by is divisible by gcd(a, b), since both a and b are
divisible by gcd(a, b).
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A second observation, which is somewhat more surprising, is that the greatest
common divisor of 42 and 30, which is 6, actually appears in our table. Thus from
the table we see that

42 · (−2) + 30 · 3 = 6 = gcd(42, 30).

Further examples suggest the following conclusion:

The smallest positive value of
ax+ by

is equal to gcd(a, b).

There are many ways to prove that this is true. We will take a constructive ap-
proach, via the Euclidean algorithm, which has the advantage of giving a proce-
dure for finding the appropriate values of x and y. In other words, we are going to
describe a method of finding integers x and y that are solutions to the equation

ax+ by = gcd(a, b).

Since, as we have already observed, every number ax+by is divisible by gcd(a, b),
it will follow that the smallest positive value of ax+ by is precisely gcd(a, b).

How might we solve the equation ax + by = gcd(a, b)? If a and b are small,
we might be able to guess a solution. For example, the equation

10x+ 35y = 5

has the solution x = −3 and y = 1, and the equation

7x+ 11y = 1

has the solution x = −3 and y = 2. We also notice that there can be more than
one solution, since x = 8 and y = −5 is also a solution to 7x+ 11y = 1.

However, if a and b are large, neither guesswork nor trial and error is going to
be helpful. We are going to start by illustrating the Euclidean algorithm method
for solving ax+ by = gcd(a, b) with a particular example. So we are going to try
to solve

22x+ 60y = gcd(22, 60).

The first step is to perform the Euclidean algorithm to compute the gcd. We find

60 = 2× 22 + 16
22 = 1× 16 + 6
16 = 2× 6 + 4
6 = 1× 4 + 2
4 = 2× 2 + 0
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This shows that gcd(22, 60) = 2, a fact that is clear without recourse to the Eu-
clidean algorithm. However, the Euclidean algorithm computation is important
because we’re going to use the intermediate quotients and remainders to solve the
equation 22x+ 60y = 2. The first step is to rewrite the first equation as

16 = a− 2b, where we let a = 60 and b = 22.

We next substitute this value into the 16 appearing in the second equation. This
gives (remember that b = 22)

b = 1× 16 + 6 = 1× (a− 2b) + 6.

Rearranging this equation to isolate the remainder 6 yields

6 = b− (a− 2b) = −a+ 3b.

Now substitute the values 16 and 6 into the next equation, 16 = 2× 6 + 4:

a− 2b = 16 = 2× 6 + 4 = 2(−a+ 3b) + 4.

Again we isolate the remainder 4, yielding

4 = (a− 2b)− 2(−a+ 3b) = 3a− 8b.

Finally, we use the equation 6 = 1× 4 + 2 to get

−a+ 3b = 6 = 1× 4 + 2 = 1× (3a− 8b) + 2.

Rearranging this equation gives the desired solution

−4a+ 11b = 2.

(We should check our solution: −4× 60 + 11× 22 = −240 + 242 = 2.)
We can summarize the above computation in the following efficient tabular

form. Note that the left-hand equations are the Euclidean algorithm, and the right-
hand equations compute the solution to ax+ by = gcd(a, b).

a = 2× b+ 16 16 = a− 2b
b = 1× 16 + 6 6 = b− 1× 16

= b− 1× (a− 2b)
= −a+ 3b

16 = 2× 6 + 4 4 = 16− 2× 6
= (a− 2b)− 2× (−a+ 3b)
= 3a− 8b

6 = 1× 4 + 2 2 = 6− 1× 4
= (−a+ 3b)− 1× (3a− 8b)
= −4a+ 11b

4 = 2× 2 + 0
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Why does this method work? As the following table makes clear, we start with
the first two lines of the Euclidean algorithm, which involve the quantities a and b,
and work our way down.

a = q1b+ r1 r1 = a− q1b
b = q2r1 + r2 r2 = b− q2r1

= b− q2(a− q1b)
= −q2a+ (1 + q1q2)b

r1 = q3r2 + r3 r3 = r1 − q3r2
= (a− q1b)− q3

(
−q2a+ (1 + q1q2)b

)
= (1 + q2q3)a− (q1 + q3 + q1q2q3)b

...
...

As we move from line to line, we will continually be forming equations that look
like

latest remainder = some multiple of a plus some multiple of b.

Eventually, we get down to the last nonzero remainder, which we know is equal to
gcd(a, b), and this gives the desired solution to the equation gcd(a, b) = ax+ by.

A larger example with a = 12453 and b = 2347 is given in tabular form on top
of the next page. As before, the left-hand side is the Euclidean algorithm and the
right-hand side solves ax + by = gcd(a, b). We see that gcd(12453, 2347) = 1
and that the equation 12453x+2347y = 1 has the solution (x, y) = (304,−1613).

We now know that the equation

ax+ by = gcd(a, b)

always has a solution in integers x and y. The final topic we discuss in this section
is the question of how many solutions it has, and how to describe all the solutions.
Let’s start with the case that a and b are relatively prime, that is, gcd(a, b) = 1, and
suppose that (x1, y1) is a solution to the equation

ax+ by = 1.

We can create additional solutions by subtracting a multiple of b from x1 and
adding the same multiple of a onto y1. In other words, for any integer k we obtain
a new solution (x1 + kb, y1 − ka).1 We can check that this is indeed a solution by
computing

a(x1 + kb) + b(y1 − ka) = ax1 + akb+ by1 − bka = ax1 + by1 = 1.

1Geometrically, we are starting from the known point (x1, y1) on the line ax+ by = 1 and using
the fact that the line has slope −a/b to find new points (x1 + t, y1 − (a/b)t). To get new points with
integer coordinates, we need to let t be a multiple of b. Substituting t = kb gives the new integer
solution (x1 + kb, y1 − ka).
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a = 5× b + 718 718 = a− 5b
b = 3× 718 + 193 193 = b− 3× 718

= b− 3× (a− 5b)
= −3a+ 16b

718 = 3× 193 + 139 139 = 718− 3× 193
= (a− 5b)− 3× (−3a+ 16b)
= 10a− 53b

193 = 1× 139 + 54 54 = 193− 139
= (−3a+ 16b)− (10a− 53b)
= −13a+ 69b

139 = 2× 54 + 31 31 = 139− 2× 54
= (10a− 53b)− 2× (−13a+ 69b)
= 36a− 191b

54 = 1× 31 + 23 23 = 54− 31
= −13a+ 69b− (36a− 191b)
= −49a+ 260b

31 = 1× 23 + 8 8 = 31− 23
= 36a− 191b− (−49a+ 260b)
= 85a− 451b

23 = 2× 8 + 7 7 = 23− 2× 8
= (−49a+ 260b)− 2× (85a− 451b)
= −219a+ 1162b

8 = 1× 7 + 1 1 = 8− 7
= 85a− 451b− (−219a+ 1162b)
= 304a− 1613b

7 = 7× 1 + 0

So, for example, if we start with the solution (−1, 2) to 5x+ 3y = 1, we obtain
new solutions (−1 + 3k, 2− 5k). Note that the integer k is allowed to be positive,
negative, or zero. Putting in particular values of k gives the solutions

. . . (−13, 22), (−10, 17), (−7, 12), (−4, 7), (−1, 2),
(2,−3), (5,−8), (8,−13), (11,−18) . . . .

Still looking at the case that gcd(a, b) = 1, we can show that this procedure
gives all possible solutions. Suppose that we are given two solutions (x1, y1) and
(x2, y2) to the equation ax+ by = 1. In other words,

ax1 + by1 = 1 and ax2 + by2 = 1.

We are going to multiply the first equation by y2, multiply the second equation
by y1, and subtract. This will eliminate b and, after a little bit of algebra, we are
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left with
ax1y2 − ax2y1 = y2 − y1.

Similarly, if we multiply the first equation by x2, multiply the second equation
by x1, and subtract, we find that

bx2y1 − bx1y2 = x2 − x1.

So if we let k = x2y1 − x1y2, then we find that

x2 = x1 + kb and y2 = y1 − ka.

This means that the second solution (x2, y2) is obtained from the first solution
(x1, y1) by adding a multiple of b onto x1 and subtracting the same multiple of a
from y1. So every solution to ax+ by = 1 can be obtained from the initial solu-
tion (x1, y1) by substituting different values of k into (x1 + kb, y1 − ka).

What happens if gcd(a, b) > 1? To make the formulas look a little bit simpler,
we will let g = gcd(a, b). We know from the Euclidean algorithm method that
there is at least one solution (x1, y1) to the equation

ax+ by = g.

But g divides both a and b, so (x1, y1) is a solution to the simpler equation

a

g
x+

b

g
y = 1.

Now our earlier work applies, so we know that every other solution can be obtained
by substituting values for k in the formula(

x1 + k · b
g
, y1 − k · a

g

)
.

This completes our description of the solutions to the equation ax + by = g, as
summarized in the following theorem.

Theorem 6.1 (Linear Equation Theorem). Let a and b be nonzero integers, and let
g = gcd(a, b). The equation

ax+ by = g

always has a solution (x1, y1) in integers, and this solution can be found by the
Euclidean algorithm method described earlier. Then every solution to the equation
can be obtained by substituting integers k into the formula(

x1 + k · b
g
, y1 − k · a

g

)
.
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For example, we saw that the equation

60x+ 22y = gcd(60, 22) = 2

has the solution x = −4, y = 11. Then our Linear Equation Theorem says that
every solution is obtained from the formula

(−4 + 11k, 11− 30k) with k any integer.

In particular, if we want a solution with x positive, then we can take k = 1, which
gives the smallest such solution (x, y) = (7,−19).

In this chapter we have shown that the equation

ax+ by = gcd(a, b)

always has a solution. This fact is extremely important for both theoretical and
practical reasons, and we will be using it repeatedly in our number theoretic in-
vestigations. For example, we will need to solve the equation ax+ by = 1 when
we study cryptography in Chapter 18. And in the next chapter we will use this
equation for our theoretical study of factorization of numbers into primes.

Exercises
6.1. (a) Find a solution in integers to the equation

12345x+ 67890y = gcd(12345, 67890).

(b) Find a solution in integers to the equation

54321x+ 9876y = gcd(54321, 9876).

6.2. Describe all integer solutions to each of the following equations.
(a) 105x+ 121y = 1

(b) 12345x+ 67890y = gcd(12345, 67890)

(c) 54321x+ 9876y = gcd(54321, 9876)

6.3. The method for solving ax + by = gcd(a, b) described in this chapter involves
a considerable amount of manipulation and back substitution. This exercise describes an
alternative way to compute x and y that is especially easy to implement on a computer.
(a) Show that the algorithm described in Figure 6.1 computes the greatest common divi-

sor g of the positive integers a and b, together with a solution (x, y) in integers to the
equation ax+ by = gcd(a, b).

(b) Implement the algorithm on a computer using the computer language of your choice.
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(c) Use your program to compute g = gcd(a, b) and integer solutions to ax+ by = g for
the following pairs (a, b).

(i) (19789, 23548) (ii) (31875, 8387) (iii) (22241739, 19848039)
(d) What happens to your program if b = 0? Fix the program so that it deals with this

case correctly.
(e) For later applications it is useful to have a solution with x > 0. Modify your program

so that it always returns a solution with x > 0. [Hint. If (x, y) is a solution, then so
is (x+ b, y − a).]

(1) Set x = 1, g = a, v = 0, and w = b.
(2) If w = 0 then set y = (g − ax)/b and return the values (g, x, y).
(3) Divide g by w with remainder, g = qw + t, with 0 ≤ t < w.
(4) Set s = x− qv.
(5) Set (x, g) = (v, w).
(6) Set (v, w) = (s, t).
(7) Go to Step (2).

Figure 6.1: Efficient algorithm to solve ax+ by = gcd(a, b)

6.4. (a) Find integers x, y, and z that satisfy the equation

6x+ 15y + 20z = 1.

(b) Under what conditions on a, b, c is it true that the equation

ax+ by + cz = 1

has a solution? Describe a general method of finding a solution when one exists.
(c) Use your method from (b) to find a solution in integers to the equation

155x+ 341y + 385z = 1.

6.5. Suppose that gcd(a, b) = 1. Prove that for every integer c, the equation ax+ by = c
has a solution in integers x and y. [Hint. Find a solution to au+bv = 1 and multiply by c.]
Find a solution to 37x+ 47y = 103. Try to make x and y as small as possible.

6.6. Sometimes we are only interested in solutions to ax+ by = c using nonnegative val-
ues for x and y.
(a) Explain why the equation 3x+ 5y = 4 has no solutions with x ≥ 0 and y ≥ 0.
(b) Make a list of some of the numbers of the form 3x+ 5y with x ≥ 0 and y ≥ 0. Make

a conjecture as to which values are not possible. Then prove that your conjecture is
correct.



[Chap. 6] Linear Equations and the Greatest Common Divisor 45

(c) For each of the following values of (a, b), find the largest number that is not of the
form ax+ by with x ≥ 0 and y ≥ 0.

(i) (a, b) = (3, 7) (ii) (a, b) = (5, 7) (iii) (a, b) = (4, 11).

(d) Let gcd(a, b) = 1. Using your results from (c), find a conjectural formula in terms
of a and b for the largest number that is not of the form ax+ by with x ≥ 0 and
y ≥ 0? Check your conjecture for at least two more values of (a, b).

(e) Prove that your conjectural formula in (d) is correct.
(f) Try to generalize this problem to sums of three terms ax+ by + cz with x ≥ 0,

y ≥ 0, and z ≥ 0. For example, what is the largest number that is not of the form
6x+ 10y + 15z with nonnegative x, y, z?


